16 research outputs found

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study

    No full text
    Administration of sodium pyruvate (SP; 9.08 μmol/kg, i.p.), ethyl pyruvate (EP; 0.34 μmol/kg, i.p.) or glucose (GLC; 11.1 μmol/kg, i.p.) to rats after unilateral controlled cortical impact (CCI) injury has been reported to reduce neuronal loss and improve cerebral metabolism. In the present study these doses of each fuel or 8% saline (SAL; 5.47 nmoles/kg) were administered immediately and at 1, 3, 6 and 23 h post-CCI. At 24 h all CCI groups and non-treated Sham injury controls were infused with [1,2 13C] glucose for 68 min 13C nuclear magnetic resonance (NMR) spectra were obtained from cortex + hippocampus tissues from left (injured) and right (contralateral) hemispheres. All three fuels increased lactate labeling to a similar degree in the injured hemisphere. The amount of lactate labeled via the pentose phosphate and pyruvate recycling (PPP + PR) pathway increased in CCI-SAL and was not improved by SP, EP, and GLC treatments. Oxidative metabolism, as assessed by glutamate labeling, was reduced in CCI-SAL animals. The greatest improvement in oxidative metabolism was observed in animals treated with SP and fewer improvements after EP or GLC treatments. Compared to SAL, all three fuels restored glutamate and glutamine labeling via pyruvate carboxylase (PC), suggesting improved astrocyte metabolism following fuel treatment. Only SP treatments restored the amount of [4 13C] glutamate labeled by the PPP + PR pathway to sham levels. Milder injury effects in the contralateral hemisphere appear normalized by either SP or EP treatments, as increases in the total pool of 13C lactate and labeling of lactate in glycolysis, or decreases in the ratio of PC/PDH labeling of glutamine, were found only for CCI-SAL and CCI-GLC groups compared to Sham. The doses of SP, EP and GLC examined in this study all enhanced lactate labeling and restored astrocyte-specific PC activity but differentially affected neuronal metabolism after CCI injury. The restoration of astrocyte metabolism by all three fuel treatments may partially underlie their abilities to improve cerebral glucose utilization and to reduce neuronal loss following CCI injury

    ENIGMA brain injury: Framework, challenges, and opportunities

    No full text
    Traumatic brain injury (TBI) is a major cause of disability worldwide, but the heterogeneous nature of TBI with respect to injury severity and health comorbidities make patient outcome difficult to predict. Injury severity accounts for only some of this variance, and a wide range of preinjury, injury-related, and postinjury factors may influence outcome, such as sex, socioeconomic status, injury mechanism, and social support. Neuroimaging research in this area has generally been limited by insufficient sample sizes. Additionally, development of reliable biomarkers of mild TBI or repeated subconcussive impacts has been slow, likely due, in part, to subtle effects of injury and the aforementioned variability. The ENIGMA Consortium has established a framework for global collaboration that has resulted in the largest-ever neuroimaging studies of multiple psychiatric and neurological disorders. Here we describe the organization, recent progress, and future goals of the Brain Injury working group

    Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group considerations

    No full text
    Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies

    Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group

    No full text
    Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study
    corecore